
Managing Distributed Systems with Smart
Subscriptions

Robert E. Filman Diana D. Lee
Research Institute for Advanced Computer Science Science Applications International Corporation

NASA Ames Research Center NASA Ames Research Center
Mail Stop 269-1 Mail Stop 269-1

Moffett Field, California 94305 Moffett Field, California 94305

Abstract We describe an event-based, publish-
and-subscribe system based on using “smart
subscriptions” to recognize weakly structured
events. We present a hierarchy of subscription
languages (propositional, predicate, temporal
and agent) of increasing expressability and
computational complexity, and several algo-
rithms (Sig, Memo, Lattice, Compile and RETE)
for efficiently recognizing event matches. We
have applied this system to implementing and
managing distributed applications.

Keywords: Publish-and-subscribe, events, man-
aging distributed applications, subscription lan-
guages, event channels, event matching algo-
rithms.

1 Introduction

This work arose in the context of developing a
framework (the Object Infrastructure Frame-
work, or OIF) to simplify creating distributed
applications. That project developed technology
to endow distributed systems with better
reliability, security, quality of service and
manageability by extending the standard
remote–procedure-call mechanisms of distri-
buted object technology (e.g., CORBA, Java RMI)
to include discrete wrapping injectors on the
communication paths between components. By
injecting the behavior for error recovery,

behavior for error recovery, redundancy, authen-
tication, access control, intrusion recognition,
priority queue management, and so forth, OIF
made substantial progress in separating and
simplifying the first three concerns: reliability,
security and quality of service [5].

However, much of manageability — fault
diagnosis, intrusion detection, performance
analysis and accounting [14] — proved resistant
to a pure injector approach. Injectors provided a
locus for recognizing manageability events, but
not a mechanism or architecture for reporting
them. This suggested extending OIF with an
event mechanism. While motivated by OIF’s dis-
tributed management needs, we created the gen-
eral distributed event system described in this
paper. Critical issues in the design of that system
were: defining what makes an event interesting
and declaring to whom should an interesting
event be reported.

In event systems, event producers asynchro-
nously generate events received by consumers.
We eschewed having producers directly send
events to consumers. Such an architecture is brit-
tle. It requires too much knowledge of the struc-
ture of a system in too many places: changes in
the organization of event producers need to be
reflected in every event consumer. Direct connec-
tion can also impede producers, particularly if
they must interrupt critical activities to support
the event-management of uncritical ones.

A solution to these problems is to position
an intermediary between producers and consum-
ers, an event channel. Producers funnel events to
the event channel. Consumers describe to the
event channel which events interest them. The
event channel is responsible for forwarding ap-
propriate events to interested consumers. This
notion of event channel also goes under the ru-
bric “publish and subscribe”: event consumers
subscribe to (interesting) events published by
event producers.

In this paper we consider how to code event
channels so that exactly the right events are de-
livered to the appropriate consumers. We
achieve expressiveness without overwhelming
communication cost by directing only interest-
ing events only to interested parties. Communi-
cation costs far more than processing, so it is
better to expend effort checking that the com-
munication is desired than to send volumes of
uninteresting data. Of course, local processing
isn’t quite free, either. We are thus addressing
two issues: what subscription languages allow
consumers to precisely describe interesting
events; and which algorithms allow event chan-
nels to organize the subscription space so as to
efficiently recognize events matching subscrip-
tions.

2 Architecture

2.1 Event Channels

The two relevant interfaces for this discussion
are consumers and event channels. A consumer
is an object to which one can publish an event
(encoded as a string). A consumer is entitled to
do whatever it wants with that event. For exam-
ple, simple consumers might print the event on a
debugging screen, write the event to a log file,
or update a database with some salient facet of
the event. Any object can act as an event pro-
ducer by composing a string that represents an
event and invoking publish on some consumer
with that string.

The interface event channel extends con-
sumer with a subscribe method. Subscribe takes

• A reference to a consumer

• A description (a string in some subscription
language) of the set of events interesting to
that consumer

• A description of what about the existing
event and environment is to be reported to
the consumer (that is, the structure of an
event to publish to the consumer)

• Optional signature information (discussed
below) that can be used to optimize sub-
scription algorithms

Subscribe returns a ticket for managing the sub-
scription. With that ticket, the subscriber can
modify or cancel a subscription. Event channels
also include a method for obtaining the closure
of the set of subscriber interests—that is, a sub-
scription that describes the union of all the
channel’s subscriptions.

Event channels, being consumers, have a
publish method. The implementation of publish
in an event channel considers the new event in
light of the existing subscriptions (and, perhaps,
past events) and publishes that event (or some
derivative of the event) to every consumer
whose subscription matches the event.

In OIF, every virtual address space has one
global (within that address space) well-known
event channel. Any application or injector that
has an event to report can publish to that event
channel. Any consumer that wishes to receive
events can subscribe to its local event channel.
Event channels on different virtual machines can
subscribe to each other. In this way, the publish
and subscribe mechanism becomes distributed,
while appropriate local decisions are made about
whether to distribute an event.

In OIF, local (in the same virtual machine)
event channels can use not only the event itself
but also information from the producer’s envi-
ronment in matching subscriptions and compos-
ing forwarding events. OIF arranges to have the
salient elements of this environment copied as
part of the annotations of ordinary calls [5]. For
example, a process could tag a particular call
with some special symbol and recognize proc-
esses created as consequences of that call as re-
taining that symbol in their environment. We
have used this feature to track the flow of con-
trol through a distributed system, generating
events when a consequent call reaches a remote
object.

OIF offered two different mechanisms for
making distributed event channels become
aware of each other. One was to make the appli-
cation responsible for setting up the event chan-
nel network and arranging appropriate subscrip-
tions among the nodes of that network. We are
currently exploring the alternative of having
information about the event channel structure be
distributed by the framework “underneath” the
application’s ordinary communications. This has
an interesting event horizon effect: knowledge
of channels interested in the effects of an action
travels as fast as that action and its conse-
quences.

2.2 Events

Event systems usually support one of two differ-
ent kind of events. Most event systems define
strongly-typed record-like event classes, where
the class structure is globally known. In such a
model, the manipulator of an event knows ex-
actly which fields it has. Often the subscription
language consists of merely describing interest
in all records of a given class or subclass. This
has the advantage of giving the programmer a
reliable set of information on which to build—if
I have an event of type t, I know it has fields x,
y, and z. It has disadvantage of requiring too
much commonly shared information, both in
space and time. We do not want to demand that
every event channel have knowledge of all kinds
of events or even to posit the existence of an
event definition repository. We expect the event
structure to change, both as temporary event
types are created to answer the questions of de-
bugging and as new event types are created as
part of the system evolution.

OIF takes the opposite tack. In OIF, events
are property sets (name–value pairs), without
system restrictions (or promises) as to the exis-
tence of any particular name–value pair in any
particular event. OIF provides a marshaling
mechanism for converting event structures to
strings for transmission, and an unmarshaling
mechanism for reinflating them back to prop-
erty–value pairs. Thus, the string event represen-
tation:

“userid: Fred; time: 12:40:18; type: error;
message: Read unhappy maknam”

would translate into an event object with four
properties (userid, time, type and message) with
the corresponding (string) values. The inter-
preter is responsible for doing data conversion
for numeric operators. There are specific nota-
tions for strings that represent remote object ref-
erences and values that are themselves events.

For debugging and system evolution, the
property approach allows us to introduce new
event fields into a running system. In terms of
subscription languages, reference to the fields of
events is straightforwardly uniform. This has the
further virtue that no common understanding of
event structure definitions is required across the
distributed system. It has the corresponding dis-
advantage that we lack compile-time checks that
structures will have properties not explicitly
demanded in subscriptions.

3 Subscription languages

A goal of this work was to minimize uninterest-
ing communications. Broadly, this suggests a
richly expressive subscription language, where a
subscriber can precisely describe which events
are of interest. However, the richer the subscrip-
tion language the more effort is involved both at
coding time in creating the subscription inter-
preter and at run time in deciding if a particular
subscription is satisfied by a given set of events.
In OIF, we created a series of subscription lan-
guages of increasing expressiveness.1 In OIF, we
have four subscription languages: propositional,
predicate, temporal and agent.

The propositional language deals solely with
the existence of properties of events. A sub-
scriber can express interest in A, B, and C, and
any event that mentioned (as properties at the

1 In this we are reminded of the hierarchies of auto-
mata, formal language grammars, and logics, where
successively elements extend the expressibility of
simpler mechanisms, often at the cost of greater
computational complexity. In practice, in both formal
language theory and OIF, these structures are not
always strictly hierarchical.

top-level) A, B and/or C would match that sub-
scription.

The predicate language provides a way to refer
to the values fields of events (and subfields of
contained events), constants, and values from
the environment; and to combine these values
with relations (e.g., “less than”) and proposi-
tional connectives (e.g., “or,” and “not”) to form
a logical well-formed formula. Using a Cam-
bridge-prefix syntax, a subscription matching
error or warning events for user Joe would be:

(and (or (= type ’error) (1)
 (= type ’warning))
 (= user ’Joe))

The temporal language loosens the prior re-
striction to single events. The propositional and
predicate languages reference a single event at a
time and, forward that event to the consumer.
The temporal language allows for expression of
relations among several events. Thus, one can
talk about the existence of events E1, E2, and
E3, such that E1 has occurred before E2, which
occurred before E3, and which share a common
user. We use RETE [7], an algorithm for rule-
based forward-chaining, as our temporal match-
ing engine. In the temporal language, subscrip-
tion (1) is

(event (time ?t1) (userid ?u1))
(event (time ?t2) (userid ?u2))
(event (time ?t3) (userid ?u3))
(test (< ?t1 ?t2 ?t3))
(test (eq ?u1 ?u2 ?u3))

To deal with the finiteness of memory, we guar-
antee only that the most recent n events will be
available for matching and that new subscrip-
tions might recognize old events.

The agent language carries the implication of
the Cambridge-prefix form to its logical exten-
sion. Subscriptions are themselves programs,
invoked by event occurrences and able to exam-
ine the local event repository. Thus, this is a
mechanism for distributing agents throughout a
system and cleaning connecting a distributed
agent to a local environment. Since we have not
yet implemented an agent language, we have
little to say about them except to note their exis-
tence at the top of the language hierarchy and

their straightforward implementation with any of
the standard Lisp-like interpreters.2

In operational terms, the subscription of a
subscribe method expects a string. The event
channel parses this string with respect to the par-
ticular language. In our implementations, we
used Cambridge prefix form as the grammatical
substrate of the various subscription languages,
as it is the simplest-to-parse recursive language.

4 Event channel algorithms

We developed several algorithms to improve the
efficiency of recognizing matching subscrip-
tions: Sig, Memo, Lattice, Compile and RETE.
(We have implemented all but the fourth.)

Sig, Memo and Lattice rely on recognizing
the signature of subscriptions. The signature of
a subscription, 6(s), is set of event properties
demanded by the subscription s. For example�6�
“(and (or (= type ‘error) (= type ‘warning)) (=
user ‘Joe))”) is {type, user}. That is, any event
matching this subscription must have (at least)
pairs whose names are “type” and “user.” We
call the properties mentioned in an event, e, the
fields of that event,)(e). Both 6�and)�can be�
represented with bit-vectors for fast subset com-
parisons. These algorithms are

Sig. Given event e, for each subscription, s,
Sig checks that 6(s) ⊂�)(e)�before evaluat-
ing s. Sig is a quick way of excluding cer-
tainly uninteresting events. Sig is appropri-
ate for applications that generate a variety
of different events and use computationally
complex subscriptions.

Memo. For each unique set), Memo keeps
a cache of those subscriptions for which
6(s) ⊂�). When another event with fields)
arrives, Memo needs to examine only the
subscriptions in the cache. On subscription

2 A similar strategy can be used for sending Java vir-
tual machine instructions as subscriptions. The Cam-
bridge-prefix form avoids the need for a resident
compiler and makes it simpler for programs to dy-
namically create subscriptions at the cost of requiring
a (simple) interpreter in the event-channel.

updates, Memo can either examine the
power set of the signature of the changed
subscription, updating the corresponding
memo values, or (in practice) clear the
memo table. Memo is useful for the com-
mon situation where the subscription set
changes slowly and events with the same
fields occur repeatedly.

Lattice extends Memo with a notion of
subsumption. That is, if 6(x) ⊂� 6(y) and
6(x) ⊄�)(e), then 6(y) ⊄�)(e), and y could
not match e. In general, the signatures of
subscriptions form a lattice with respect to
subset. Lattice constructs the (sparse) lat-
tice as a data structure. It works by flatten-
ing the lattice to a single path. Lattice han-
dles subscription change more easily than
Memo, and is most appropriate when there
is a lot of subsumption in the subscription
structure.

Compile. Each subscription can be viewed
programmatically: when the subscription
condition is met, perform the forwarding
action. Compile treats the entire subscrip-
tion set as a program by sequencing the
subscriptions, and performing arbitrary
compiler optimizations on the resulting
program. In particular, elements such as
common sub-expressions can be moved
forward so as to be computed only once,
tests such as (> x 3) can be placed so as to
shadow (> x 7), and subsumptions can be
realized by moving subsumed rules into the
then-parts of more general subscriptions.
Compile is most appropriate for a relatively
static subscription set that contains a large
number of common sub-expressions.

RETE. The first four algorithms deal with
matching a single event to a single sub-
scription. The temporal language matches
multiple events to a subscription. In our
implementation, we used the JESS [6] im-
plementation of RETE for pattern matching.

Which is best? The optimal subscription channel
algorithm is a function of the expected distribu-
tion of events and subscriptions. As we have
indicated, some algorithms take advantage of an
expected variety in the published events, while
others do better on related or repeated event

types. Similarly, the amount of effort expended
when a new subscription is received can be
worthwhile only given a particular frequency of
subscription changes.

5 Applications

We have implemented the event channel mecha-
nism described here in the OIF distributed com-
puting framework, and applied it in a demon-
stration application [8]. That application im-
plemented a simulation of a distributed, com-
petitive network management application. It
used injectors to achieve quality of service (i.e.,
real-time performance), manageability and secu-
rity. It used the event mechanism to dynamically
drive “inspector” user interfaces. The event
mechanism also proved critical in debugging the
application, particularly as injectors could gen-
erate events on every remote invocation. Events
could then be selectively scanned to get a trace
of interprocess calls, and this trace could be
transparently directed to both visible graphic
user interfaces and textual logs.

In general, in OIF one can arbitrarily and dy-
namically modify the injectors of proxies or set
the default behavior of a set of proxies to in-
clude a particular injector. By making an injec-
tor that generates trace events and applying that
injector appropriately, the event mechanism can
be made to track the patterns of interprocess
calls in the system.

6 Related work

6.1 Event models.

In the taxonomy of the Barrett, Clarke, Tarr and
Wise’s Framework for Event-Based Software
[2], OIF’s event mechanism uses point-to-point,
application-to-application communication. Mod-
ules have no explicit specification of their
interfaces. OIF supports dynamic system modifi-
cation and allows fully abstract naming. Our
publishers are Barrett’s informers; our consum-
ers, listeners; and our event channels, routers.
The subscription mechanism effectively serves
to do message transformation. We posit no de-

livery constraints beyond the underlying distrib-
uted object framework. The local event channel
on each virtual machine serves as a group.
Rosenblum and Wolf [11] describe a seven-
component framework for event observation and
notification. Within that framework, our pub-
lishers are the invoker objects and subscribers
are the objects of interest. Events are explicitly
generated by invoking the send event action,
naming is implicit in the naming of event fields
(the property-based model), observation is by
explicit subscription, information is by the ac-
tion of a subscription, pattern abstraction and
filtering is by the pattern part of the subscription
language, and the partitioning arises naturally
from the set of subscriptions made. We have no
explicit time model, notification is by distributed
object technology calls, and the resources for
sorting through subscriptions are provided by
the sender and the intermediary event channels.

6.2 Event implementations.

Bates [3] argues for using a rule-based publish
and subscribe system to debug heterogeneous,
distributed systems. Primitive events are defined
and source code is annotated so that the execut-
ing program generates event instances. Bates
also uses a rule-based engine for complex event
detection, fairly similar to RETE, though inde-
pendently discovered.

The Elvin project is a publish-subscribe ser-
vice that delivers notifications on the basis on
the event’s content [12]. It has an event sub-
scription language that allows subscribers to
place some constraints over the notifications,
flexible definition of events that allow develop-
ers to define events as required, dynamic defini-
tion of event types, and allows the creation of
new events based on old events. Elvin also in-
troduces the idea of quenching that “allows
event producers to receive information about
what consumers are expecting of them so that
they need only generate events that are in de-
mand.” In contrast to Elvin, which has a single
centralized event channel, OIF’s event channels
are distributed.

The Ariadne Debugger in TAU stores an exe-
cution history graph of events and allows the
subscriber to specify patterns using a simple

subscription language that is capable expressing
temporal relations among several events but un-
able to express other simple prepositional or
complex relations among events [13]. To com-
pensate for the language’s limitations, Ariadne
“provides a scalable, spread-sheet like interface
for exploring match trees.”

CEDMOS is composed of event-producers
and event-consumers that are connected through
event-transformers. “The event transformers
convert streams of incoming events into differ-
ent streams of events, which are … of interest to
the event-consumers” [1]. To ease the definition
the event transformers, a graphical tool facili-
tates the definition of complex events from sim-
ple events.

Brant and Kristensen apply events to web-
based notification. Their architecture includes
the notions of annotated lists, a well-worked-out
datatype mechanism and a good implementation
of filtering [4]. Intermetrics [10] describes a de-
sign for applying events to doing debugging of
distributed, components. Luckham and Frasca
apply event patterns, causal histories, filtering
and aggregation to provide higher levels of ab-
stractions for managing distributed systems [9].

7 Discussion

We have discussed the publish and subscribe
mechanism in the Object Infrastructure Frame-
work. This mechanism has proved to be a pow-
erful tool in debugging and managing distrib-
uted systems, supporting functions such as fault
diagnosis, intrusion detection, performance
analysis, and accounting. Key elements of this
work are the ability to inject event generators
into existing components, existence within a
framework that provides a continuing environ-
mental context, the use of unstructured events,
rich subscription languages, and selectable and
efficient algorithms for subscription resolution.
Topics for further work include (1) subscription-
forwarding mechanisms that do not require tree-
like branching, (2) security mechanisms for sub-
scriptions and event channeling (including the
ability of an event generator to limit who could
notice his events), (3) quantifying the actual per-
formance of different event-channel algorithms
in realistic cases, (4) implementing agent sub-

scription languages, and (5) implementing sub-
scription compilation.

Acknowledgements

The ideas expressed in this paper have emerged
from the work of the MCC Object Infrastructure
Project, where Dr. Filman was on assignment
from Lockheed Martin Corporation and Ms. Lee
an MCC employee. We have further developed
these ideas at NASA Ames. We thank Stu Bar-
rett, David Filman and Ted Linden for discus-
sions on this subject and Cecilia Aragon, David
Korsmeyer, Tarang Patel, and Alex Shaykevich
for their comments on drafts of this paper.

References

[1] Baker, D., Cassandra, A., and Rashid, M.
CEDMOS: Complex Event Detection and
Monitoring System. Microelectronics and
Computer Technology Corporation, 1998.

[2] Barrett, D. J., Clarke, L. A., Tarr, P. L., and
Wise, A. L. An event-based software
integration framework. ACM Transactions
on Software Engineering and Methodology
5, 4 (October 1996) 378–421.

[3] Bates, P. C. Debugging heterogeneous dis-
tributed systems using event-based models
of behavior. ACM Transactions on Com-
puter Systems 13, 1 (February 1995), 1–31.

[4] Brandt, S. and Kristensen, A. Web push as
an internet notification service, W3C
Workshop on Push Technology, (Boston,
Massachusetts, September 1997),
http://keryxsoft.hpl.hp.com/doc/ins.html.

[5] Filman, R. E., Barrett, S., Lee, D. D., and
Linden, T. Inserting ilities by controlling
communications. CACM (in press). http://ic-
www.arc.nasa.gov/ic/darwin/oif/leo/filman/t
ext/oif/oif-cacm-final.pdf

[6] Friedman-Hill, E. J. JESS, The Java Expert
System Shell. DANS98–8206 Distributed
Computing Systems Sandia National Labs.,
Livermore, CA, (September 1998).
http://herzberg.ca.sandia.gov/jess

[7] Forgy, C. L. RETE: A fast algorithm for the
many pattern/many object pattern match
problem. Artificial Intelligence 19, 1 (1982)
17–37.

[8] Lee, D. and Filman, R. Verification of
compositional software architectures.
Workshop on Compositional Software Ar-
chitectures, Monterey, CA, January 1998.
http://www.objs.com/workshops/ws9801/p
apers/paper096.doc.

[9] Luckham, D. C. and Frasca, B. Complex
Event Processing in Distributed Systems.
Stanford University Technical Report CSL-
TR–98–754 (March 1998).
ftp://pavg.stanford.edu/pub/cep/fabline.ps.Z

[10] Ress, J. Intermetrics’ Owatch debugging
technology for distributed, component-
based systems. OMG–DARPA–MCC Work-
shop on Compositional Software Architec-
tures (Monterey, CA, Jan. 1997).
http://www.objs.com/workshops/ws9801/p
apers/paper058.html.

[11] Rosenblum, D. S., and Wolf, A. L. A de-
sign framework for internet-scale event ob-
servation and notification. Proceedings of
the Sixth European Software Engineering
Conference/ACM SIGSOFT Fifth Symposium
on the Foundations of Software Engineer-
ing (September 1997), 344–360.

[12] Segall, B. and Arnold, D. Elvin has left the
building: A publish/subscribe notification
service with quenching. Proceedings of
AUUG97 (Brisbane, Queensland, Australia,
September 1997).

[13] Shende, S., Cuny, J., Hansen, L., Kundu, J.,
McLaughry, S., and Wolf, O. Event and
state-based debugging in TAU: A Prototype.
Proceedings of SPDT’96: SIGMETRICS Sym-
posium on Parallel and Distributed Tools
(Philadelphia, May 1996), 21–30.

[14] Stallings, W. SNMP, SNMP-2, and CMIP: The
Practical Guide to Network-Management
Standards. Reading MA: Addison-Wesley,
1993.

